Edge-connection of graphs, digraphs, and hypergraphs

نویسنده

  • András Frank
چکیده

In this work extensions and variations of the notion of edge-connectivity of undirected graphs, directed graphs, and hypergraphs will be considered. We show how classical results concerning orientations and connectivity augmentations may be formulated in this more general setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs

Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree  and its in-degree . Now let D be a digraph with minimum degree  and edge-connectivity If  is real number, then the zeroth-order general Randic index is defined by   .  A digraph is maximally edge-connected if . In this paper we present sufficient condi...

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

Competition Hypergraphs of Products of Digraphs

If D = (V,A) is a digraph, its competition hypergraph CH(D) has vertex set V and e ⊆ V is an edge of CH(D) iff |e| ≥ 2 and there is a vertex v ∈ V , such that e = {w ∈ V |(w, v) ∈ A}. For several products D1 ◦D2 of digraphs D1 and D2, we investigate the relations between the competition hypergraphs of the factors D1, D2 and the competition hypergraph of their product D1 ◦D2.

متن کامل

Niche hypergraphs

If D = (V,A) is a digraph, its niche hypergraph NH(D) = (V, E) has the edge set E = {e ⊆ V | |e| ≥ 2 ∧ ∃v ∈ V : e = N− D (v) ∨ e = N + D (v)}. Niche hypergraphs generalize the well-known niche graphs (cf. [?]) and are closely related to competition hypergraphs (cf. [?]) as well as double competition hypergraphs (cf. [?]). We present several properties of niche hypergraphs of acyclic digraphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000